

MATHEMATICS 2020-2021

Course title	ECTS	Degree	Course code	Prerequisites	Subject area
Linear Algebra	6	В	P120U519	School's mathematics.	Mathematics
Graph Theory	3	В	P110B202	School's mathematics	Mathematics
Mathematical Analysis	6	В	P130U518	School's mathematics.	Mathematics
Integrals in Rn Space	4	В	P130U520	Course <i>Differentiation in Rn</i> (or analogous).	Mathematics
Differentiating in Rn Space	4	В	P130U521	Mathematical analysis (one-variable functions).	Mathematics
Differential equations	5	В	P130B119	The basic knowledge of the mathematical analysis and the linear algebra.	Mathematics
Mathematic in economy	5	В	P001B122	Students must know the fundamental math course of the secondary school.	Mathematics
Probability Theory	6	В	P160B146	Knowledge of mathematical analysis.	Mathematics
Probability Theory and Mathematical Statistics	3	В	P160B171	Course of School Mathematics.	Mathematics
Theory of Complex Functions	4	В	P130B118	Courses of Mathematical Analysis, Geometry and Algebra.	Mathematics
Computer Statistics	6	В	P175B216	Courses of Probability Theory and Mathematical Statistics.	Mathematics

			Subject area: Mathematics
Status	Course title: LINEA Taught by: Assoc. Prof		
Semester	ECTS credits	Languages	Duration
Autumn or Spring	6	English	1 semester
Study hours	Assessment	Prerequisites	Examination
Lectures – 32 h Seminar – 32 h Self-study – 96 h	10-point scale	School's mathematics.	Colloquium – 20 % Test – 40 % Individual Homework – 10 % Exam – 30 %
Subject conter		equations. Vector spaces. Linea minants. Systems of linear inequality	r independence. Basis. Rank. Matrices and matrix alities.
Learning Outcome	Ability to choose	~	of algebra, ability to illustrate them with and examples. linear algebra. Ability to thinking analytically and
Literatur	 Lee W. Jonson, I J. Valantinas, Le 	ecture notes in linear algebra and difference ar Algebra. Comment:internet access had norg	to Linear Algebra. Pearson Addison Wesley, 2001. ntial calculus. Technologija, Kaunas, 2007.

				Subject area: Mathematics
Status	Course title: GRAI Taught by: Assoc. Pr		na	
Semester	ECTS credits	Languages	Duration	

Autumn or Spring	3	English	1 semester
Study hours	Assessment	Prerequisites	Examination
Lectures – 24 h Seminar – 16 h Self-study – 40 h	10-point scale	The basic knowledge of the linear algebra.	Test – 40 % Individual Homework – 20 % Exam – 40 %
Subject content	homeomorphic g characteristics. C	geometric interpretation. Directed, und raphs. Connected graphs. Matrixes of go perations with graphs. Eulerian and Ha numbers in the graph theory. Tree grap	graphs and its applications. Metric amiltonian cycles, applications to
Learning Outcomes	model real proce		orems of the graph theory. Will be able to ained results in practice. Will be able to
Literature	 E. Bender. Lists, https://cseweb.ucs R. Diestel. Graph 	Theory. Comment:internet access https://www.ntu.edu Decisions and Graphs. Comment:internet access sd.edu/~gill/BWLectSite/Resources/LDGbookCOV.p Theory. 2000. Comment:internet access https://courses.lu.ntmentsinternet access https://courses.lu.ntmentsinternet access https://courses.lu.ntmentsinternet	<u>df</u>

_

T 1: 1

			Subject area: Mathematics
Status	Course code: P130U518 Course title: MATHI Taught by: Professor Dr.	EMATICAL ANALYSIS	,
Semester	ECTS credits	Languages	Duration
Autumn or Spring	6	English	1 semester
Study hours	Assessment	Prerequisites	Examination
Lectures – 32 h Seminar – 48 h Self-study – 80 h	10-point scale	School's mathematics.	Colloquium – 15 % Test – 40 % Individual Homework – 15 % Exam – 30 %
Subject conten	Properties of cont		theory. Continuous and uniformly continuous functions. and differentials of functions. Primitive functions. Definite
Learning Outcome	differential and in		late main concepts and propositions of sets, limits, vill know and will be able to select and adjust the methods egrals.
Literatur		thematical Analysis I. Springer-Verlag, thematical Analysis II. Springer-Verlag	
	4. J. Valantinas, Leo	nalysis I. 2019. <u>https://www.jirka.org/r</u>	ntial calculus. Technologija, Kaunas, 2007.

	6. http://www.math	i-atias.org	
			Subject area: Mathematics
Status	Course code: P130U520		
	Course title: INTEGI	RALS IN Rn SPACE	
	Taught by: Assoc. Profes	ssor Dr. GARBALIAUSKIENĖ Virginija	
Semester	ECTS credits	Languages	Duration
Autumn or Spring	4	English	1 semester
Study hours	Assessment	Prerequisites	Examination
Lectures – 16 h Seminar – 32 h Self-study – 59 h	10-point scale	Course "Differentiation in Rn" (or analogous)	Test – 40 % Individual Homework – 20 % Exam – 40 %
Subject conten		ons in several variables. Double and triple in their orientation. Curve and surface inte	ntegrals, and applications. Multiple integrals.
Learning Outcome	Ability to choose p	rstand the main concepts and propositions proper methods of integrations solving tasks and apply them solving tasks.	of integration of several variable functions. s. Ability to self-study and analyze new

Literature

- 1. V.A. Zorich. Mathematical Analysis I. Springer-Verlag, Berlin, 2004.
- 2. V.A. Zorich. Mathematical Analysis II. Springer-Verlag, Berlin, 2004.
- 3. https://www.math24.net/topics-calculus/
- 4. https://mathinsight.org/double_integral_introduction

			Subject area: Mathematics
Status	Course code: P130U52	1	
	Course title: DIFFE]	RENTIATING IN Rn SPACE	
	Taught by: Assoc. Profe	essor Dr. GARBALIAUSKIENĖ Virginija	
Semester	ECTS credits	Languages	Duration
Autumn or Spring	4	English	1 semester
Study hours	Assessment	Prerequisites	Examination
Lectures – 16 h Seminar – 32 h Self-study – 59 h	10-point scale	Mathematical analysis (one-variable functions).	Test – 50 % Individual Homework – 20 % Exam – 30 %
Subject conten		her order. Implicit functions and their diffe	Ferentiation. Total differentials. Derivatives erentiation. Local extrema. Conditional
Learning Outcome	functions. Ability	rstand the main concepts and propositions to choose proper methods of differentiatio methods and apply them solving tasks.	of differentiation of several variable n solving tasks. Ability to self-study and analy
Literatur	 V.A. Zorich. Math J. Valantinas. Lec https://www.math 	thematical Analysis I. Springer-Verlag, Berlin, 2004. hematical Analysis II. Springer-Verlag, Berlin, 2004. eture notes in linear algebra and differential calculus. 124.net/topics-calculus/h.lamar.edu/ProblemsNS/CalcIII/CalcIII.aspx	Kaunas. Technologija, 2011.

			Subject area: Mathematics
Status	Course code: P130B119 Course title: DIFFER Taught by: Lector Dr. KL	ENTIAL EQUATIONS OVIENÉ Neringa	
Semester	ECTS credits	Languages	Duration
Autumn or Spring	5	English	1 semester
Study hours	Assessment	Prerequisites	Examination
Lectures – 16 h Seminar – 32 h consultation – 6 h Self-study – 79 h	10-point scale	The basic knowledge of the mathematical analysis and the linear algebra.	Test 1 – 30 % Test 2 – 30 % Individual Homework – 0 % Exam – 40 %

Subject content

The course consists of the preliminaries of the ordinary differential equations theory: the main concepts of differential equations, various first-order differential equations and their solving, the solutions and the existence and the uniqueness theorems, various higher order differential equations and their solving, the fundamental solutions and the analysis of the differential equations systems, real physical models described by differential equations or systems.

Learning Outcomes

The knowledge of the differential equations theory concepts, definitions, theorems and proofs. Knowledge of the differential equations solving methods and abilities to apply these methods for solving theoretical and practical problems. Ability to choose and apply the reasonable methods of differential equations theory for modeling and solving the physical problems. Ability to think logically and analytically using differential equations theory concepts and symbols. Ability to find the relationship between different parts of the task, to create and to motivate the algorithm of the solving, to evaluate different approaches of the analysis and to choose the most reasonable.

Literature

- 1. Garrett B., Rot G. C, Ordinary Differential equations. Waltham (Mass.): Blaisdell Publishing Company, 1969.
- 2. Brauer F., Nohel J. A., Problems and solutions in ordinary differential equations. New York: W. A. Benjamin, 1968.
- 3. Adkins W., Davidson M. G., Ordinary Differential Equations. Springer, 2012.
- Teshl G. Ordinary Differential Equations and Dynamic Systems. AMS, Providence, 2012. http://www4.ncsu.edu/~schecter/ma_732_sp13/teschl_ode.pdf
- Hirsch Morris W., Differential equations, dynamical systems, and an introduction to chaos. 2013. http://www.sciencedirect.com/science/book/9780123820105
- Shapiro B. E., Lecture Notes in Differential Equations. California State University, Northridge, 2011. http://bruce-shapiro.net/math351/ODE.pdf

			Subject area: Mathematics
Status	Course code: P001B122 Course title: MATHI Taught by: Lector Dr. KI	EMATIC IN ECONOMY LOVIENÊ Neringa	,
Semester	ECTS credits	Languages	Duration
Autumn or Spring	5	English	1 semester
Study hours	Assessment	Prerequisites	Examination
Lectures – 16 h Seminar – 16 h Lab. Work – 101 h	10-point scale	Students must know the fundamental math course of the secondary school.	Test – 40 % Individual Homework – 30 % Exam – 30 %
Subject conter	sets, the knowled equations, to crea methods of explan	ge of calculating derivatives, functions,	seeking to absorb the theory of functions and integrals, determinants, to solve differential lities systems. Explaining of the subject the ed. Assessing the skills of students is used
Learning Outcome			sed in economic problems. Will be able to ms. Will receive individual and group work
Literatur	 Bradley T., Pattor Simon, C., Blume Jacques, I. (2009) Chiang, A. C., W Renshaw, G. (2007) Anthony, M., Big Press. 	12). Basic mathematics for economics, business, and fin P. (2002). Essential mathematics for economics and et al. (2010). Mathematics for Economists, W. W. Nord. Mathematics for Economics and Business. Financial ainwright, K. (2005). Fundamental Methods of Mathematics. OUP Oxford. 12). Math for Economics. OUP Oxford. 13). Mathematics for Economics and financial Methods. Mathematics for Economics and financial Methods for Economics, Addison-	business, New York: John Wiley & Sons. ton & Co. Times/ Prentice Hall. ematical Economics. McGraw-HillHigher Education. te (Methods and Modelling). Cembridge University

			Subject area: Mathematics
Status		146 BABILITY THEORY rofessor Dr. KANIŠAUSKAS Vaidotas	
Semester	ECTS credits	Languages	Duration
Autumn or Spring	6	English	1 semester
Study hours	Assessment	Prerequisites	Examination
Lectures – 48 h Seminar – 48 h Self-study – 64 h	10-point scale	Knowledge of mathematical analysis.	Colloquium – 25 % Test – 50 % Exam – 25 %
Subject conte	probability. Op Random value dimensional ran	perations with events. Probabilistic scless. Distribution functions. Density. No	Space of elementary events. Classical definition of nemes. Formulas for calculation of probabilities. Imerical characteristics of random values. Two-methods. Characteristics functions. Law of large
Learning Outcom	their he probab random variable characteristic f them; learn to independence u types to randon	illities. Knowledge of the theory of randoles, the discreteness or continuity of it, functions. Knowledge of numerical chartof find covariance and correlation functions various criteria; knowledge of the the sequences and ability to apply them.	abilities, to make actions with events and to calculate om variables, ability to recognize the distribution of find their distribution functions, densities and the acteristics of random variables and ability to find ctions of random variables and investigate their neory of random vectors. Knowledge of convergence
Literatu	2. Charles M. G http://www.di 3. Oliver Knill. http://www.n 4. Leif Mejlbro. http://bookbo 5. V. Krokhman	h, BASIC PROBABILITY THEORY. http://www.hrinstead , J. Laurie Snell. INTRODUCTION TO Prartmouth.edu/~chance/teaching_aids/books_articles PROBABILITY THEORY AND STOCHASTIC Ptath.harvard.edu/~knill/books/KnillProbability.pdf INTRODUCTION TO PROBABILITY PROBABIOn.com/en/introduction-to-probability-ebook a. Introductory Probability and the Central Limit Thath.uchicago.edu/~may/VIGRE/VIGRE2011/REU	ROBABILITY /probability_book/amsbook.mac.pdf PROCESSES WITH APPLICATIONS BILITY EXAMPLES C-1. neorem . 2011.

			Subject area: Mathematics
Status	Course code: P160B171 Course title: PROBA Taught by: Professor Dr.	BILITY THEORY AND MATHEM. MACAITIENĖ Renata	ATICAL STATISTICS
Semester	ECTS credits	Languages	Duration
Autumn or Spring	3	English	1 semester
Study hours	Assessment	Prerequisites	Examination
Lectures – 8 h Seminar – 16 h Lab. Work – 8 h Self-study – 48 h	10-point scale	Course of School Mathematics.	Tests – 50 % Laboratory works – 30 % Exam – 20 %

Subject content

The course is intended for the students of Electrical Engineering, Electronic Engineering, Civil Engineering, Informatics Engineering and Mechanical Engineering Study Programmes. During the studies, the students familiarize with the fundamental theories and models of random events, random variables and mathematical statistics (the calculations of descriptive statistics, and the correlation and regression analyses are performed, parametric hypotheses are verified); the methods of tasks solving and the software tools of data processing, also the principles of interpretations of results and assumptions are discussed.

Learning Outcomes

Knowledge, understanding and ability to define the main notions and propositions of probability theory and mathematical statistics' theory as well as the methods and principles; to illustrate them with the examples. Ability to apply the acquired knowledge in solving classical tasks. Ability to model and perform the elementary statistical research, to select and apply appropriate mathematical methods and specialized software packages, to present and reasonably interpret the results.

Literature

- 1. E. T. Berkman, S. P. Reise, Conceptual guide to statistics using SPSS. Los Angeles, London: Sage, 2012.
- 2. Fundamentals of probability. http://www.statlect.com/fndprb.htm
- 3. Fundamentals of statistics. http://www.statlect.com/fundamentals_of_statistics.htm
- 4. Introductory Statistics. https://openstax.org/details/books/introductory-statistics
- 5. Probability and Random Variables. https://web.stanford.edu/class/archive/ee/ee278/ee278.1176/lectures_EE178/lect01-2_Abbas.pdf

Subject area: Mathematics

- 6. J. Gravner. Lecture Notes for Introductory Probability. https://www.stat.berkeley.edu/~aldous/134/gravner.pdf
- 7. P. Sahoo. Probability and Mathematical Statistics http://www.iiserpune.ac.in/~ayan/MTH201/Sahoo_textbook.pdf
- S. Landau, B. S. Everitt, A Handbook of Statistical Analysis using SPSS. <a href="http://www.fao.org/tempref/AG/Reserved/PPLPF/ftpOUT/Gianluca/stats/Statistics%20-%20A%20Handbook%20of%20Statistical%20Analyses%20using%20SPSS%20-%20Excellent%20!!!.pdf
 S. Landau, B. S. Everitt, A Handbook of Statistical Analysis using SPSS. http://www.fao.org/tempref/AG/Reserved/PPLPF/ftpOUT/Gianluca/stats/Statistics%20-%20Excellent%20!!!.pdf

Course code: P130B118 Course title: THEORY OF COMPLEX FUNCTIONS Taught by: Professor Dr. MACAITIENĖ Renata Semester ECTS credits Languages Duration
0.00
Autumn or Spring 4 English 1 semester
Study hours Assessment Prerequisites Examination
Lectures – 32 h Seminar – 32 h Self-study – 43 h 10-point scale Courses of Mathematical Analysis, Geometry and Algebra. Tests – 75 % Exam – 25 %

Subject content

During the studies, the knowledge of mathematical analysis is expanded to the complex plane: the students familiarize with the set of complex numbers, sequences and series, functions of complex variable (analytical, harmonic functions, elementary mappings); the differential (Cauchy and Riemann conditions, differentiation rules) and integral (integral by smooth curve, the basic integral theorems, application of Cauchy integral formula) computing is studied; the convergence of functions series, the expression by power and Laurent series are studied as well; the students are provided with the basics of Residue theory and its application for integrals' calculation.

Learning Outcomes

Knowledge, understanding and ability to explain the main notions and propositions of differentiation and integration of complex functions, series of functions, the theories of residues as well as the methods and principles of analysis, to illustrate them with the examples. Ability to formulate and prove the main propositions of the theory of complex functions, to find and explain the connections and functional relations. Ability to apply the acquired knowledge in solving classical tasks.

Literature

- 1. Basics of Complex Numbers.
- https://portal.uea.ac.uk/documents/6207125/8203725/other+essential+skills+basics+of+complex+numbers.pdf
- 2. C. Berg. Complex Analysis, 2012. http://web.math.ku.dk/noter/filer/koman-12.pdf
- 3. K. Houston, Complex Analysis, 2005. https://www.zuj.edu.jo/download/complex-analysis-k-houston-pdf/.
- $4. \hspace{0.5cm} S. \hspace{0.1cm} G. \hspace{0.1cm} Krantz. \hspace{0.1cm} A \hspace{0.1cm} guide \hspace{0.1cm} to \hspace{0.1cm} Complex \hspace{0.1cm} Variables, 2007. \hspace{0.1cm} http://www.math.wustl.edu/~sk/books/guide.pdf. \hspace{0.1cm} A \hspace{0.1cm} fractional contractions and the sum of the sum of$
- 5. W. Chen, Introduction to complex analysis. http://williamchen-mathematics.info/lnicafolder/lnica.html
- 6. Complex Functions and the Cauchy-Riemann Equations. http://www.math.columbia.edu/~rf/complex2.pdf.

			Subject area: Mathematics
Status	Course code: P175B216		
	Course title: COMPUTER STATISTICS		
	Taught by: Professor Dr. MACAITIENÉ Renata		
Semester	ECTS credits	Languages	Duration
Autumn or Spring	6	English	1 semester
Study hours	Assessment	Prerequisites	Examination
Lectures – 32 h Lab. Work – 32 h Self-study – 96 h	10-point scale	Courses of Probability Theory and Mathematical Statistics.	Laboratory works – 75 % Exam –25 %
Subject content During the studies, the students familiarize with the software tools of data processing; the cardescriptive statistics and estimations of parameters are performed, parametric and nonparametria are verified, the correlation, regression, factor analysis and other multidimensional statistical used, the principles of interpretations of results and assumptions are discussed.		med, parametric and nonparametric hypotheses other multidimensional statistical methods are	
Learning Outcome	Knowledge and understanding of the methods and principles of data collection, systemization and processing. Ability to select and apply appropriate mathematical methods and specialized software to statistical calculations and data analysis, to present the obtained results and conclusions. Ability to model and perform the statistical research, to present and reasonably interpret the results.		
Literatui	 E. T. Berkman, S. P. Reise, Conceptual guide to statistics using SPSS, Los Angeles, London: Sage, 2012. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer, 2009. https://www-stat.stanford.edu/~tibs/ElemStatLearn. Introductory Statistics. https://openstax.org/details/books/introductory-statistics S. Landau, B. S. Everitt, A Handbook of Statistical Analysis using SPSS. 		